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[1] Recent published work assessed the amount of time to detect trends in atmospheric
water vapor over the coming century. We address the same question and conclude that
under the most optimistic scenarios and assuming perfect data (i.e., observations with no
measurement uncertainty) the time to detect trends will be at least 12 years at approximately
200 hPa in the upper troposphere. Our times to detect trends are therefore shorter than
those recently reported and this difference is affected by data sources used, method
of processing the data, geographic location and pressure level in the atmosphere where the
analyses were performed. We then consider the question of how instrumental uncertainty
plays into the assessment of time to detect trends. We conclude that due to the high natural
variability in atmospheric water vapor, the amount of time to detect trends in the upper
troposphere is relatively insensitive to instrumental random uncertainty and that it is
much more important to increase the frequency of measurement than to decrease the
random error in the measurement. This is put in the context of international networks such
as the Global Climate Observing System (GCOS) Reference Upper‐Air Network
(GRUAN) and the Network for the Detection of Atmospheric Composition Change
(NDACC) that are tasked with developing time series of climate quality water vapor data.
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1. Introduction

[2] Water vapor is one of the most important components
of the atmosphere when considering atmospheric chemistry,
radiation, dynamics and clouds. For example, increases in
stratospheric water vapor can lead to cooling of the strato-
sphere, warming of the troposphere [Forster and Shine,
2002] and delay the recovery of ozone [Shindell, 2001;
Weatherhead and Andersen, 2006]. Solomon et al. [2010]
have recently shown that decreases in lower stratospheric
water vapor have slowed the rate of global surface temperature
increase over the last decade. Trends in upper tropospheric
water vapor concentrations and temperature will influence
cirrus cloud frequency and composition. For these reasons and
others, significant effort has been put into both measurements
and modeling of UT/LS water vapor to assess long‐term

trends in water vapor concentrations and thus address the
consequences of changes in UT/LS water vapor amounts.
[3] A recent work by Boers and van Meijgaard [2009]

(hereafter referred to as BM2009) considered an ensemble
of 150‐year simulations of upper tropospheric water vapor
at 300 hPa over the Netherlands using a regional climate
model to study the measurement needs for revealing trends
in atmospheric water vapor. Their simulations indicated
nearly a doubling in upper tropospheric water vapor con-
centration over the coming century. Applying a well‐known
statistical model [Weatherhead et al., 1998] to their time
series indicated that a statistically significant trend in water
vapor concentration could be discerned within 30 years
using a perfect data set with no random errors imposed. We
have studied the same problem using a global climate
model, different data sources, different geographic location,
and different pressure levels. We then extend our discussion
to the main purpose of this paper, which is to consider the
relative importance of observation random error and
observation frequency on the time to detect trends.

2. Trend Detection Tools

[4] The statistical model employed here, which assumes
autoregressive of the order 1 (AR‐1) behavior in the data, is
that described byWeatherhead et al. [1998, 2002] and is the
same as used in BM2009. We summarize here the technique
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as we used it. A time series of water vapor concentrations
can be described by the following equation where the unit of
time is one month

Y ¼ �þ !
t

12
þ S þ N ; ð1Þ

where Y is the water vapor concentration, m is a constant, w
is the mean trend per year (% year−1), S is the seasonal term,
t is the time in months, and N is the monthly mean noise of
the time series. The time to detect a trend at the 95% con-
fidence level with probability 0.9 can be approximated by

n* ¼ 3:3�N
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where n* is the number of years to detect a trend, w0 is the
trend magnitude (% year−1), sN is the standard deviation
of the total noise in the time series (% of mean value), and
�N is the autocorrelation of the noise.
[5] Equation (2) implies that after the calculated number

of years, there is a high probability (90%) that a trend of the
correct sign will have been detected if we assume that
detecting a trend means identifying a trend at the 95%
confidence level. As discussed in BM2009, higher levels
of certainty about the exact magnitude of the trend
require longer measurement periods. However, the use of
equation (2) will permit us to make the main conclusions
of the paper that are discussed later.
[6] To evaluate equation (2), values for the anticipated

trend, the standard deviation and autocorrelation of the noise
of the data time series are needed. Previous research has
shown that these values vary by location and altitude, which
helps to explain why the time to detect trends in environ-
mental variables can be strongly a function of site location
[Weatherhead et al., 2002]. For the purposes of the study
here, we obtained a value for the anticipated trend using the
Goddard Earth Observing System Chemistry Climate Model
(GEOSCCM) [Pawson et al., 2008] along with the Inter-
governmental Panel on Climate Change (IPCC) greenhouse
gas scenarios [Intergovernmental Panel on Climate Change
(IPCC), 2000] and 3 different sea surface temperature
simulations. The results are shown in Figure 1. Two simu-
lations were run using the IPCC Special Report on Emission

Scenarios (SRES) A1B greenhouse gas scenario [IPCC,
2000]. The runs differ in the sea surface temperature
(SST) and Sea Ice boundary conditions used. The first one
used was the Hadley Centre climate model (HadGEM1)
[Johns et al., 2006] which has a larger than average climate
sensitivity. The second was the Community Climate System
Model version 3 (CCSM3) [Collins et al., 2006] which has a
lower than average climate sensitivity. The runs were con-
ducted for the IPCC Fourth Assessment Report [IPCC,
2007] and the output was used in GEOSCCM. An addi-
tional simulation was conducted using the IPCC SRES A2
greenhouse gas scenario [IPCC, 2000]. This represents a
higher‐end emissions scenario and this run was conducted
using only CCSM3 SST and Sea Ice boundary conditions.
[7] There are several points to be made from Figure 1.

The simulated water vapor concentration increases are
largest in the tropical upper troposphere with maximum
values ranging from approximately 75%–150% at a pressure
level of approximately 150–200 hPa. Moving to higher
latitudes, smaller anticipated increases in water vapor con-
centration are found with the maximum increases shifting to
higher pressure levels/lower altitudes. Taking the middle
panel results (A1B with HADGEM1 SSTs) as representative
of an average simulation, the maximum mean annual
increase in upper tropospheric water vapor concentration
over the 100‐year simulation is approximately 1% with
larger increases occurring in the latter part of the century.
These results are in general agreement with those of
BM2009 and earlier studies [Soden et al., 2005]. A point
can be made here, however, of a significant difference
between the methods of BM2009 and those used here.
BM2009 considered an ensemble of regional climate model
runs and, not knowing which run was more representative of
the future, performed calculations of times to detect trend
such that trends would be detected in any of the climate
scenarios. Here, we consider the results of one climate run
that is something of the average of the three climate runs
shown in Figure 1. The more conservative approach of
BM2009 contributes to the longer times to detect trend
calculated in their paper.
[8] The standard deviation and autocorrelation of the

noise of atmospheric water vapor are also needed to evaluate
equation (2). To estimate these values, we studied two time
series of water vapor measurements from the Department of

Figure 1. Three 100‐year simulations of water vapor concentrations using the GSFC Earth Observing
System Chemistry Climate Model. The contours show the percentage change in water vapor concentra-
tions over the 100‐year simulation period. See text for further description.
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Energy’s (DOE) Southern Great Plains (SGP) Climate
Research Facility (CRF) in northern Oklahoma. The first
was a 15‐year record of Vaisala radiosonde data from 1994–
2010 and the second was a 5‐year record of Raman lidar
data from 1998–2003. We used these two data sets to obtain
representative values for standard deviation and autocorre-
lation of the noise in the upper troposphere where the trends
in water vapor are indicated in Figure 1. Examination of the
monthly averaged data reveals that at higher levels in the
atmosphere, the data show temporal memory in accord
with an auto‐regressive model with time lag of one month
(AR‐1). Lower in the atmosphere, the autocorrelation
observed in the monthly averaged data is not always sig-
nificant, but there is no evidence for deviation from an AR‐1
model. The observed, deseasonalized values as well as the
underlying noise drivers behave in a close to Gaussian
manner, allowing for defensible estimates of how long it
will take to detect future trends. The noise of the time series
is calculated from equation (1) by evaluating N = Y − m −
wt/12 − S, where m was determined first by averaging the
time series. w was determined next by performing a linear fit
of Y − m and finally, S was determined by performing a
nonlinear fitting of Y − m − wt/12 with a set of 8 sine and
cosine terms [Weatherhead et al., 1998] that possess varying
periods and amplitudes. Approximately mid‐way through
the radiosonde data record DOE switched from the RS80
sensor to the RS90/92 series. We found that the radiosonde‐
based results were similar for the RS80 and RS9X data sets
although the RS9X data tended to give slightly larger values
of atmospheric noise, consistent with the faster response
time of the relative humidity sensor [Miloshevich et al.,
2006]. It is also possible, though, that the known daytime
dry bias of the RS9X radiosonde series added to the time
series noise. Because of the improved response time of the
RS9X radiosonde and the generally improved performance
of the RS9X versus the RS80 [Miloshevich et al., 2006], we
used only the Vasiala sonde data after 2001 in the following
analysis.
[9] The radiosonde and lidar data were processed into

time series of daily water vapor profiles so that, similar to
BM2009, we were able to study the effects of varying

sampling frequencies on the calculated noise and autocor-
relation. This technique is similar to one used previously in
the context of temperature trend detection from radiosonde
data [MacDonald, 2005]. We will first perform the analysis
without considering measurement error, which will be
considered in the next section. Figure 2 presents the monthly
mean autocorrelation and noise as well as the number of
years to detect a trend based on the radiosonde data analysis
under the assumption that all variability in the time series is
due to the atmosphere (i.e., no measurement error). The
analysis of the lidar data gave reasonably similar results
although the lidar data set had significant gaps that com-
plicated the analysis lending less confidence in the analysis.
Also plotted as a function of pressure level on the fourth
panel of Figure 2 is the 100‐year mean increase in water
vapor concentration at the latitude of the SGP site in
northern Oklahoma based on the Figure 1 (middle). Figure 2
indicates that monthly autocorrelation of the noise in the
range of 200–300 hPa is relatively independent of sampling
frequency at an approximate value of −0.1–0.1 for most
frequencies. Monthly mean fractional variability (standard
deviation divided by the mean) of the noise in this same
height range varies depending on sampling frequency from
approximately 0.2 to 0.8 with lower values corresponding to
higher sampling frequencies, consistent with the relationship
found in the earlier study [MacDonald, 2005] of atmo-
spheric temperature. The third and fourth panels of Figure 2,
considered together, indicate that the number of years to
detect a trend is smallest at the peak in the 100‐year mean
anticipated trend of approximately 1% per year at a pressure
level of approximately 150–200 hPa. At this level, the time to
detect a trend varies from less than 15 to more than 30 years
for sampling frequencies ranging from one to thirty times
per month. At 250 hPa the range of times to detect trends
increases to 18–45 years due to the smaller anticipated trend
and the higher noise at 250 hPa versus 150–200 hPa.

3. Partitioning the Noise

[10] The preceding analysis assumed that all time series
noise was due to natural atmospheric variability and that the

Figure 2. The first panel shows monthly mean noise autocorrelation versus the number of measurements
per month derived from the DOE/ARM radiosonde times series using only data after 2001. The second
panel gives the standard deviation of the noise divided by the mean of the time series. The third panel
provides the number of years to reveal a trend and the fourth panel gives the water vapor trend from
the middle GEOSCCM run shown in Figure 1. The results in the first three panels have been
restricted to 100 hPa due to increased concerns over radiosonde accuracy at higher altitudes.
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instrument contributed no noise. But certainly the instru-
ment does contribute noise to the time series. So our goal
now is to consider the influence of variable instrumental
noise on the time to detect trends. In BM2009, 10% random
errors were simulated to represent the best currently avail-
able sounding systems. We would like to vary this error
value and study the effects on the time to detect trends. To
do so, we assume that the noise derived from the mea-
surements can be expressed as follows [Tiao et al., 1990]:

�N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
A

1� �2
N

þ �2
Itot

s
; ð3Þ

where sA is the atmospheric noise and sItot is the total
instrumental noise. The instrumental noise is taken to
include both random and systematic components. The use of
equation (3), therefore, assumes that any systematic effects
average out over time to become a random variable with
mean of zero. This assumption places constraints on
instrument calibration and any corrections that are applied to
the data [e.g., Miloshevich et al., 2009] in a climate quality
time series. Any errors introduced by such calibrations and
corrections must average to zero over time for this
assumption to be valid. The task of separating the atmo-
spheric and instrumental contributions to the noise could, in
principle, be done almost perfectly with the DOE/ARM
(Department of Energy/Atmospheric Radiation Measure-
ments) water vapor lidar time series if one assumes that the
dominant noise in the lidar data in the upper troposphere is
random and not systematic. The reason for this is that the
magnitude of the random errors in Raman lidar data are
easily calculated using Poisson statistics [Whiteman, 2003].
However, the lidar time series has significant gaps in the
data record and periods of reduced signal‐to‐noise that
significantly complicate the analysis task. In particular,
de‐seasonalizing the lidar data is complicated by the presence
of these data gaps. The radiosonde time series is much more
robust in this sense and possesses few data gaps. However,
there is no random error specification that comes with the
radiosonde data. We can, however, appeal to recent work in
studying radiosonde data to get estimates of reasonable
values for radiosonde instrumental variability. Miloshevich

et al. [2009] report a sonde‐to‐sonde variability of approx-
imately 3% for the Vaisala RS92. This same work shows a
standard deviation of comparisons between uncorrected
RS92 and the frostpoint hygrometer reference instrument of
approximately 10–15% at 200 hPa. In light of this result and
in order to make the main point of this paper, we will
consider the noise in the radiosonde time series to range up
to 50%. We consider this to likely be an overestimate of the
actual random error introduced into the time series by the
radiosonde instrument errors. However, doing so will pro-
vide high confidence that the range of values for the natural
variability in atmospheric water vapor at 200 hPa that is
extracted from the radiosonde time series includes the actual
value of atmospheric variability of water vapor at this level.
[11] The analysis of the ARM radiosonde daily noise

shows a value of sN/Y of approximately 0.75 at 200 hPa.
Assuming the range of random errors in the radiosonde time
series of 0–50%, and using equation (3) to separate the
atmospheric and instrumental contributions, yields a range
of values for the atmospheric contribution to sN/Y of
approximately 0.56–0.75 at 200 hPa. We will use this range
of atmospheric noise values in the following computations.

4. The Effects of Variable Instrument Noise

[12] The questions of the optimum sampling frequency
and what instrumental noise is acceptable for climate data
records are important ones for networks, such as the Global
Climate Observing System (GCOS) Reference Upper Air
Network (GRUAN) [World Meteorological Organization,
2007] and the Network for the Detection of Atmospheric
Composition Change (NDACC) [Leblanc et al., 2008;
Whiteman et al., 2010], that attempt to monitor changes in
atmospheric water vapor. We address those questions here by
use of equation (2), where the values of monthly mean noise
and autocorrelation are calculated from the DOE/ARM
radiosonde time series discussed above and the assumed
trend at the DOE/SGP site is determined from Figure 1
(middle) and shown on the fourth panel of Figure 2.
[13] Figure 3 shows the time to detect trends in upper

tropospheric (200 hPa) water vapor for sampling frequencies
of 1, 7 and 30 times per month and instrumental uncer-
tainties ranging from 0–100%. There are two curves for each
sampling frequency corresponding to the estimated range of
atmospheric noise of 0.56–0.75 based on the radiosonde
time series as discussed above. The predictions based on
intermediate values of atmospheric noise are indicated by
the shaded regions in the figure. For a perfect measurement
system, i.e., one with no instrumental uncertainty, that
provides measurements of upper tropospheric water vapor
(200 hPa) on a daily basis, the time to detect trends ranges
from approximately 12–15 years depending on the amount
of atmospheric noise. The lower the atmospheric noise, the
smaller the number of years to detect the trend. A daily time
series of water vapor measurements created using an instru-
ment possessing total noise of 50% increases the estimated
range of times to detect trends by about 2–3 years to
approximately 15–17 years. The larger increase corresponds
to the assumption of lower atmospheric noise. By contrast, a
time series created by a perfect measurement system operat-
ing 7 times per month will need to extend from 16 to 22 years
to detect the same trend. Once monthly measurements will

Figure 3. The number of years to detect a trend in upper
tropospheric water vapor concentration versus the total
uncertainty in the measurement system used to create the
time series for various sampling frequency. The range of
natural water vapor variability, sA, is 0.56 to 0.75.
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require a minimum of 35–42 years to reveal the trend. One
can see that, due to the natural auto‐correlation of atmo-
spheric parameters measured on short time scales, the time
to detect trends decreases less rapidly as measurement fre-
quency increases.

5. Discussion and Conclusions

[14] The analysis here yields somewhat lower times to
detect trends than BM2009. The number of years to detect a
trend at 200 hPa, assuming daily measurements by a perfect
measurement system, were calculated here to be 12–15 years
at the SGP site as opposed to 30 years at 300 hPa for
the northern Netherlands location considered in BM2009.
Several differences in the analysis presented here and that of
BM2009 were noted that likely contribute to these differ-
ences. Our noise assumptions are based on past behavior of
the atmosphere recorded by radiosondes at the SGP site of
DOE/ARM and therefore, do not account for the anticipated
increase in noise in the water vapor time series in the future
[Boers and van Meijgaard, 2009]. The anticipated increase
in water vapor is also lower at a higher latitude such as in
the northern Netherlands than at SGP and contributes to the
longer times to detect a trend in the upper troposphere cal-
culated by BM2009. There is evidence as well that the day‐
to‐day autocorrelation may be higher at higher latitudes
[Weatherhead et al., 2010] and the magnitude of the natural
variability of upper tropospheric water vapor is likely dif-
ferent between the two studies. And finally, and perhaps
most importantly, BM2009 used the more conservative
approach of specifying the time to detect trends for all the
climate runs that they studied whereas we chose the climate
run that showed “average” trend behavior among the three
that we studied.
[15] The use of radiosonde data to calculate water vapor

noise and autocorrelation in the upper troposphere, as done
here, may seem suspicious given the known measurement
uncertainties of radiosondes in this part of the atmosphere
[Miloshevich et al., 2006, 2009]. There may well be some
errors in the calculated values of water vapor noise and
autocorrelation because of these radiosonde measurement
limitations. However, the calculation of both noise and
autocorrelation are not affected by static systematic errors
such as a constant calibration error. Calibrations that change
over time would introduce additional noise into the time
series, but the documented standard deviation of the differ-
ences between RS92 and the reference cryogenic frostpoint
hygrometer (CFH) sensor were approximately 10–15%while
the range of noise assumed for the instrument was 0–50%.
We believe that the considerably larger range of assumed
instrumental uncertainty is likely to include the effects of
radiosonde calibration changes and production‐related bia-
ses assuming that these effects average out over time to
become random variables. Likewise, calculations based on
the Raman lidar water vapor time series are plagued by
missing data and possible changes in calibration. However,
the fact that the analysis of the two data sets provided
similar results for the value of atmospheric noise lends
confidence in the range of real atmospheric water vapor
noise used in the study here. That range is indicated by the
shaded regions in Figure 3. Furthermore, the major con-
clusions of this work relating to the relative merits of

increasing sampling frequency versus decreasing instru-
mental uncertainty are quite robust since even a 50%
instrumental error budget increased the time to detect trend
by only a few years. We conclude that the influence of the
known errors in the radiosonde and lidar time series are not
significant to the major conclusion based on Figure 3 that, in
order to reveal trends in upper tropospheric water vapor in a
shorter amount of time, increasing the frequency of mea-
surement is more important than decreasing the random
error in the measurement. Large errors in the magnitude of
calculated atmospheric noise would change the time to
detect trends significantly, but not in this relationship and,
again, the general agreement in the magnitude of the real
atmospheric noise calculated from radiosonde and lidar
lends confidence in the range of real atmospheric noise
values used.
[16] Our analysis indicates that at the SGP site, there are

not large changes in atmospheric noise and autocorrelation
at different levels in the upper troposphere. According to the
climate simulations, however, the anticipated trend in water
vapor shows a reasonably well‐defined peak at approxi-
mately 200 hPa. Therefore, to improve the efficiency of
trend detection at the SGP site it is important for the mea-
surement system to provide quality data where the peak in
water vapor trend occurs, i.e., in the region of 200 hPa. The
climate simulation also shows that anticipated trends in the
lower stratospheric water vapor concentrations are consid-
erably smaller than in the upper troposphere. Furthermore,
extended time series of water vapor concentrations in the
lower stratosphere [Hurst et al., 2011] indicate that the
variability in lower stratospheric water vapor in the mid‐
west of the U.S. is also much smaller than in the upper
troposphere. Considering equation (2), both of these results
indicate that detecting trends in lower stratospheric water
vapor will be more sensitive to additional measurement
noise than in the upper troposphere. It is for this reason that
the work done here implies that trend detection of water
vapor over the coming century may be more easily per-
formed in the upper troposphere than in the lower strato-
sphere. A combination of Microwave Limb Sounder data
and the Boulder time series could be studied in the future to
attempt to address this question further.
[17] Scheduling protocols are presently being discussed

within international networks such as GRUAN and NDACC.
The desire to respond to these needs was a motivation for
BM2009 and for the work presented here. We have extended
the work of BM2009 to address the question of the influence
of total instrumental uncertainty on the quality of a climate
data record for UT water vapor trend detection. The anal-
ysis presented here indicates that, due to the high natural
variability in tropospheric water vapor, it is much more
important to sample the atmosphere more frequently than to
use a measurement system with the smallest error budget
less frequently. Measurement systems with total error of
even 50% do not extend the time to detect UT trends by
a large amount provided that the total uncertainty of the
measurement approximates a random variable over time.
This implies that whatever recalibrations or adjustments are
made to the measurement system and the data series created
by it vary more or less randomly around some mean value.
The tolerance for relatively large random error budgets in
creating a climate quality time series of upper tropospheric
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water vapor implies that remote sensing systems such as
Raman lidar [Whiteman et al., 2006, 2010; Leblanc et al.,
2008], where the random error in the measurement of
water vapor typically increases with altitude, could con-
tribute usefully to monitoring trends in upper tropospheric
water vapor although it will be necessary to have stringent
quality control procedures in place to guard against errors
[Whiteman et al., 2006; Leblanc et al., 2008; Boers and van
Meijgaard, 2009] in upper tropospheric Raman lidar water
vapor measurements. It should be noted in this context,
though, that a large random error could mask the presence of
a small systematic error making its detection more difficult.
[18] Our results also indicate that a time series created

with a sampling frequency of seven times per month, or
approximately every four days, will reveal a trend in a
period of time approximately 1/3 longer than a time series
created from daily measurements. Given the expense and
complexity of daily soundings with good quality upper
tropospheric measurements and the diminishing returns for
more rapid measurements, every 4 days or approximately
twice per week may be a reasonable goal for sampling
frequency for developing a climate quality time series of
water vapor. This result is similar to an analysis of atmo-
spheric temperature trend detection that indicated that the
uncertainty in the calculated trend increased significantly for
sampling frequencies of less than once every 3 days
[MacDonald, 2005].
[19] It should be made clear that we did not consider in

this analysis various real‐world problems that can plague
atmospheric data. Step jumps in the time series, drifts in
calibration and gaps in the data record, for example, are not
considered. A real time series of atmospheric water vapor is
likely to have one or more of these present, which would
serve to increase the amount of time to detect trends. These
effects could be studied in the future using a Monte Carlo
approach where a large number of possible biases are con-
sidered and the mean and standard deviation of times to
detect trend are assessed. Given the large amount of natural
variability in upper tropospheric water vapor and the general
robustness of the results, we do not expect that the presence
of systematic biases of moderate magnitude in the data will
influence one of our main results – that it is more important
to increase the measurement frequency than the accuracy of
the measurements in order to reveal trends more efficiently.
[20] However, both GRUAN and NDACC are at the

beginning of their efforts to create useful time series mea-
surements of atmospheric water vapor. The likely presence
of contaminating influences, such as gaps, drifts and changes
in calibration, needs to be considered at the outset of the
implementation of these networks. Previous research in
homogenizing time series of radiosonde temperature data
[Free et al., 2002] has demonstrated that different methods
used to homogenize historical data sets can produce divergent
results. Therefore, it is important for the GRUAN and
NDACC communities to consider implementing data quality
procedures now that will help to assess data quality on an
operational basis with the goal of minimizing the influence of
systematic errors on the times series that are being acquired.
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